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*[ FOREWORD

This papor examines a class of variable metric methods of mk•ilmluln
unconstrained functions that arise when the Sequential Unconstrained Minimi-
zation Technique (SUMT) Is applied to general nonlinar programming prob-
lems. The methods considered require a knowledge of only the first derivativesfh th wmietwa to be munmizeck but proceed to estimate th1 inverse hessian of

second partial derivatives during the course of a series of one-dimensional
mini izations.

Three now algorithms and the Fletcher-Powell-Davidon algorithm are
derived using simple properties of a general solution to the problem of esti-
mating the iz'erse hessian. Results of numerical calculations for several
examples show the relative merits of the new algorithms compared to several
in currcnt use.

Nicholas M. Smith
• ,•Head, Advwaced Research Department
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ABSTRACT a

Awo basic approaches to the generation of caWugato di-
recLlaa are eonsidered for the problem of unconstraiaed miziml-
zation oi quadratic functions, The first approach results in a
projected gradient algorithm that gives "•i step" convergence for a
quadratic. The second approach is based on the generalized solution
of a set of undetermined linear equatious, various forms of which
generate various new algorithms all giving n -step convergence.
One of the'n I the Fletcher and Powell modification of Davidon's
method.

Resulta of an extensive numericn comparison of these meth-
ods with the Newtoa-Rap,.son method and Fletcher-Reeves method
are included.
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1, INTRODUCTION

General

Let A be an n x n positive definite symmetric matrix; let b be an arbitrary

"n vector and c an arbitrary constant.
Consider the problem of finding the minimizing, it ve-or x x*, for a

quadratic function f(x) defined by

The methods considered here, called variously "variable metric,"' "quasi-

Newton," 2' 3 or "large-step gradient methods," consist of selecting an n x n

matrix H, at stage i and forming the direction d, = II where a, is the gradient

of f(x) at xI. A step of length a, is chosen so th'at x, 4 0 11d is the minimum

of [(x, + aIId ), i.e., wi[ere d, = 0. H, is then upditted using (x,,! - x,)and

1- s)- If If, f I this is the method of steepest descent. The Newton-

Raphson method is obtained with H, = A1-. wever, on a nonquadratic func-

tion A or its equivalent the hessian of f(i. I) ,y not be available. It is then of

general interest to e)amine methods that utuize only first-derivative inforrna-r• tion and that in addition may estimate A.

Since, as is reviewed in Sec 2, a quadratic can be minimized in n steps

if do, d, ,dJ,_1 are conjugate directions, this paper studies a class of Iii matrices

that will generate con43ga.z directions. In Sec 3, H,£ is chosen as a projection

matrix and, in Sec 4, II is chosen as a solutiun to the equation HY, S-. The

Fletcher-Powell- Davidon5 algorithm is sho ý to be a member of this latter

class. A numerical comparison of several n w algorithms with the Fletcher-

Powell-Davidon and the Fletcher-Reeves algorithm is given in Sec 5.
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Notation

At iteration t the following column vectors occur:

z, is the current solution.

91 is the gradient of f(x) at x,.

III is the current direction matrix or metric.

d h i; the acarch dikectivn 1rom z, d,'dl - 1.

81If - 9 " As, Is the step in x,'

a, is the step length, a negative scalar.

a denotes g, transpose, a row vector.

S, = [so, sl, . . . , s,-I I denotes a matrix with columns so, . , s,_
and also without ambiguity rso, S,. ,s) denotes tshe sub

space spanned by vectors s0 , sl ,... , *

Y, = [yo, Yli Y,-_ I denotes an nxi matrix with columns y,.

2. PROPERTIES OF CONJUGATE DIRECTIONS

It is convenient to isolate the properties of conjugacy from the problem

of generating conjugate directions as discussed in later sections.

Definition

A set of Pi independent directih :,s do, d,.... dl,-I are conjugate with

respect to a positive-definite symmetric matrix A iff'
d:AdI 0 O0. J .<ý. I<. -0 O . ,': I( )

4,Ad 0 0, 1i (2)

Any point x E E'l can be represented in terms of do, . , d.-1 as follows:

Let
It

then A, 'Addt,

Similarly the quadratic [(x) x-'2 'Ax + x'b + I; can be decomiposed into m in-

dependent terms.

A b cn b ino i



.I

~~~2~ 4~) > I)it .L Aidi>~
S~(3)

. ('4A2d' Ad, tALb'd)

Thus any quadratic can be minimized in n steps by minimizing the n terms

independently.

Defene n i matrices Y, and•S,
S'•'•~~~~ - t•.l. .. li

S• w 5s1, s I.s

,Since s. ,, - x, y, - g and g, = Ax, + b then,
r - As 4

and
V;s) s• 0 (< (4)

when the steps so, s, ... are conjugate.

Now consider two simple results that hold for independent dlrectlo. i d,.

Lemma 1. The point x, = x0 + ol d is the minimum of f(x) over the

subspace [do, d d... , .I if and only if S8 -0.

Proof: If (zx) is a minimum in direction di then

S[a(X,)]to d; ,4, - 0 fr 0 _ < i , ... , S;A 0

Since [(x) is strictly convex let i, = X I +E d1 ; then fli,) a f(z ) +

oil (11 - x,), equality occurring only when = x1.

if Si',i - 0, i.e., d1
1  0 for 0 i -1 ; then c, X 0 implies f(f') > [(xi),

and f(xI) is the minimum.

Lemma 2, Suppose at x,, S1'g, 0; if si satisfies Yts, = 0 and s/ig, - 0,

then Si+ 1 8, 1  0-

"Proof: On a quadratic function Ys S = S ,('- 91+I) = gi-2 0. If

in addition s'g,, 2 = 0, then by definition of S, S. 0,

Lemma 1 provides a simple characterization of the progress at stage i

and lemma 2 indicates that stepping to a minimum in a direction orthogonal to
i the previous gradient changes locates the minimum over a larger subspace.

Note that in neither case was conjugacy of the d1 required, only independence.

S 5



3 THE PROJECTED GRADIENT ALWORLTHM

As Eq 4 shows, one way of generating conjugate directions is to make

successive steps orthogonal to previous gradient changes. It is remrnkable

that this can be done on arbitrary functions f(x) and produces a weaker form

of conjugacy discussed elsewhere. 7 A result similar to Theorem I has been

given independently by Goldfarb,*

Theorem 1

Let R be a symmetric positive definite matrix and define si, yi by the

recursionFI0 110 1 (5)
,0 liI - A-R A'(Y,'RV') 1 V,

f 4+ win !f(xd +4 lig) (6)

S1+ - [st, i -* ,1 (7)

Y i+ 1 - il' , ,l' 9 1+ 4 11

then either for some j <

11A - 0. fl 0 and Q 0, -X

or if the recursion continues to n

H" - 0 g" - 0,

Proof: If go = 0, then io = I and zo= x*. If go 10, then do= HoRg 0 #0. Equa-

tion 6 requires dog, 0, i.e., a* --•d•/Ado <0, and consequently both so

and y0 ; 0. Thus Y, = Eyol and 31 [so] both here rank 1, and S1 9  so'1 = 0.

Proceeding by induction, suppose Y, and S, have rank i and S,'a, 0. Then

H, exists and is a projection matrix with properties H? = Hi, HI'Y, - 0. HIRY, = 0.

Thus from Eq 5 each new direction is orthogonal to the columns of Y,.

Now d, HRg, - 0 if•and only if 9, =0, for if gB X 0, then by Eq 5 g E

£yo, Y, y3_ ), i.e., for some u, g, = Yw. However, S,'8I = 0 implies

S•Y, w = SASiw - 0 for w ý 0, which contradicts the definiteness of A. Thus

HRg, 0 implies S, 0.

Suppose HRgP, #0; then Eq 6 requires d.g,, =0, i.e., a, = Ri•'g/

BHRH 0Ag, < 0 since I Is not a litear combination of y0 , y, , . y, y,-. Thus s,

6



and y, are nonzero. The direction choice implies Ys, = 0 and as a result

Y1,I,$ 1, 1 have rank I + 1. OUherwise for some w O, yt -Ytwand Siy, st

AS1 w " 0 as before. Similarly If s, Si, /0, Ys1  SASiw a0 implies u, -0.

The recursion terminates for some i when 1,RS, 0 0, which requires

•j =0 andx ,

If the recursion continues to i= n, as is likely, then, since 1j induction

Y,, 5, have rank n and S., = 0, it follows that 9 * 0, I, U. x*, and fI, -0.

A convenient algorithm can be found by application of the bordered in-,

verse lemma in App A, to

H R*. - HV,(YR -1)fl

I Algorithm. 1

i (9)io -

Ri ÷ . ,

Then Eq 6 is replaced by

Sf(1, (10)

Corollary 1.1. If YVs, Ofor i =1,2,.. ,j,then s0 ,s, ... , are

conjugate.

Prool: Ys =0 impliess'A = sAsk =0 for k < i, i.e., s;Ask 0

R allows a choice other than I for the initial Ho, a property that apparently

minimizes round-off errors.' However, R can also be used to take advantage

of any partial inverse of A.

Suppose A has a partitioned form
I: AQ: A12 )

A \A 2, A2 ,/

Assume A-d is a known r x r block and set
0) -, No (I)

0 0

Inserting this in Eq 10, a simple calculation shows that

1 7
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asui that

Thus the topi components of g, are zero after this "partial inverse" step.

Let sQ, sl,..,. , ,s,- I be t unit vectors of the form .•' (0O,O .,to ,, Io . ... ')

wit I in the i+!th position.

Lot V, -AN - (A,, , A,:, )', then clearly S, and V, have rank r, and i

t then 5s, - 0, But these are the inductive hypotheses in Theorem I at

the rth stage, which yields,

Coroiiary 1.2. After the partizi Inverse utep (Eqs 10 and ii) the projected

gradient algorithm Is at stage r with If, defined by

It will terminate in not more than P - r further steps.

A more transparent explanation of the restart is to note that if A,1 d1 1 +

A1 d, =0 where d,' d,' , ,2 ), then the top r components of g, are unchanged

from 0. ThiLs is equivalent to Eq 13. (See App C for an example.)

4. VARIABLE METRIC ALGORITHMS

The class of algorithms in this section are based on the following idea.

ifIlli satisfies flY, = S, and steps so, sl,... , s, I were obtained by minimiz-

ing down independent directions, i.e., Sq, =0, then the direction d, = Hl'5
San step St =-aid, a'e(on~jtgate to so, s1,... , i-I ,i.e., Vi'si = i'• ••

al,S'g, - 0. Clearly if the process continues to stage mH,, =l f A-1, and all the

steps are conjugate. Since g, is orthogonal to the previoer n steps it must
be zero.

Now consider the general solution to the equations HY, = S,. This has

the form for arbitrary Z of
11, S.Y, - Zo - , (14)

where Y is the generalized inverse of Y, .' U V, is of rank I, then Y*

(Y,)'Y)-, , andhas the property that YJY isaprojectionof E"onto [y 0,

yl,. y, In addition x- YVb minimizes (Yx -b'(YVx-b).

8
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Suppose that Y, hla rank i; then it will be convenient to define Y*

Sv~zv, ) - w ', , H , N W A pItive definite symmeturtc mtrix. Note that

S.1.4 - l YA. '

also satisfies HYj - S, that Y, Y4' V ,( YIil Y,) Y'1H also is a projection matrix,

and ftt z* Yi'b minlrmizes (Yz- b)'H(Y1I - b),

Theorem 2, General Variable Metric Algorithm

Let R ad H be positive definite symmetric matrices and define the

algorithm as follows:

for i - 0
dI - (15)

fori >0
fi - SV +* RO -' VY04 18

where
V, and YT 6%.avC tic b.a fVI',•- ) (17)

with H R or A-1 independently for each term.

"Y 41 - -4, - + 1 "z 1 (19)

with
• -L• -%. • - - a} (20)

Then the algorithm terminates for some - to when H q= 0 implies g, 0,

X, ýx*. Ii rntiienH Un 'A .

Proof: If xo i z" then go 10. Using Eqs 15, 18, and 20 the first step results

in Yk and 5s having rank 1 and S'q 0.

Proceedirg by induction, suppose that at stage < , a, # 0, Y, and S, have

rank i and , S 0. It will be shown that thsis true for i.

Computing the direction of search, 11,1 4 S'A (9 ) u1 = 0

S'-1Y, (YlH')-I Y 1 Raa 0 if and only if H-IRg• Cy0, y, _. , But for

H -R or H 4A4.S 1ag'g 0 would require R, 0. Thus H, #01 it#0.

.i



Minimizing at stage 4, 0, -H/ItI, 0 it a only Uf o ,

If ii A-Iiten gHA" g,'R, > 0. If H -R, p.H, gVR-I >0. Thus if g, O, I
aA 0. By construction, V ,,1" - ) m y' 0. This fact, Eq 18, and lemmt 2

provide that .s , 
101 

0- T s 
O

Since ca1 #0, x,• -x, a a -g are nwi.ero and S,. y Y in Eq 19 will

rhave rank i oth ()Uerwise y, iý [yo y1, .+ ,~ an since V,, -0,
-0 and sim~ilarly s,0, a contradiction,

Thus the iteration can only terminate it a, = 0 for which x, z,*; otherwise

it proceeds until i - a. Here, however, S. has rank m and Sg.' =0 implies q,1
and x x *, H A4-1 by construction since YY. S have rank ia.

Since H can be chosen to Ix A-1 or R in Eqs 18 and 17 there are four pos-

sible algorithms in this scheme.

The next corollary allows for the fact that if a restart Is used the initial

directions [so# s, s... ,as are not necessarily conjugate. See Corollaries

1.1 and 2.1. However under normal orwrations this is the case.
Corollary2.1. If Y's, 0for i - 1,2,... ,< a,thens ,s ,...,s i

are conjugate.

Particular algorithms can be obtained by choosing H differently for each
Y,* in F.q 16.

Algorithm 2

Choose
S• .. sIs~ ,•• t .v sv)• (21)

This corresponds to H A-' in Eq 1'. Expanding this formula using the

bordered inverse lemma in App A,
li.1 - Hi,+ (s , - s, A ,'•'/y( - (,2I2s,

H0 
- R

where
A S

When used in Theorem 2, the projection properties of H, require that Y,'s, 0

and consequently
I (23)

140 - R

10



This particular algorithm Is due independently to 0, P. McCormick., Note
Sthat in general H, io unsymmetric,

S~Choose[ _ Rif -'u1yl m •rl . (24)

This correspondt to H - R throughout Theorem 2, Exparding this formula and

using the prulection properties ut It, in the form -4st0

(25)

Again H, will be unsymmetric and in particula.r here HJY,1 HI,.

Algorithm 4

Choose
a,4  . IS ,'V1,)-

4 S" ki 1', "• 'I (26)

This correoponds to H - A I in the first Yi and H - R in the second Y4 of

Eq 16. Expanding H, aM using the projection properties of H, in the form
Y :' 5 S ,'y , 0 , ,

This is Immediately recognized as Fletcher and PoweU's modification of

Davidon's algorithm.' H, Ito synametrlc and the search direction H•:, ,,11,0

as cormmonly "ued.

As for the projection natr•Lx, let s, i , 0,1, . . ,r - 1 be the first r unit

vectors and define Y, AS,. Thenn if g 1 given by Eq 12, S'a = 0 and both

S1, I , have rank t. A simple calculation shows that for the Fletcher-Powell

algorithm

0 ( 0 ) (28)

Corollaq 2.2. After a partial inverse s tep (Eqs 18 and 1I) the Fletcher-

PoweLl-Davidon algorithm can be restarted from the r th stage with

11



It will terminatte in rwt rnore thAn t - t further steps. An example is given

in App C.

In principle the general variable metric method can be considered. All

that is required is that independent directions s, 1 F YOP Yl 0 . , (-I
be fuund such that for some initial estimate fit n R& SY" R. and SS?! 0.

A fifth algorithm can be derived analogous to Algorithm 4 by inserting

H A A in the first V* of Eq It ad A-' in the "ccond. Unfortunately it &Ari not

lead tu a readily computable formula as do the others.

5. NUMEHICAL RkSULT6

Results of testing these algorithms on nonquadratic functions will now be

given. The numerical procedure for the seven mchemes considered is as follows.

Given f(x), g(z), and posibly A( ), the inatrix of second partial deriva-

tives of t(x) evaluated at x, and starting at xu with lu = k, the initial matrix,

and normalizing d4 ,

(a) Find the first local miimum of f(x[ + old')

•, -l• ,. tt~l•.,(31)

(b) Update fl, according to the algorithm used.

Algorithm 1, Projected Gradient Method (P-G)

11'.1 , f , , (32)

for i - , rand every n steps 11, R,

Algorithm 2
I1,. !l . (• II•,li .,,•, 33)

Algorithn 3

t(34)

12



Algorithm 4, Fletcher-. Powell- Dvldon (F- P-D)

it Ili - 4l. (35)

Algorithm 5, Newton-.Raphson (N-R)

Ii, IA~,]l136)

The program uses a modified Newton-Raphson step when it 94)peare that
A(zI) hab negative elgenvalues as Identiflied during the process of Inversion

of A(zM) using the Crout procedure. Li this case the direction al move is along

an eigenvector corresponding to n "cfative etgenvalue. By this means a region

is located where the function is convex."0

Algorithm 6, Fletcher-Reeves (P-R)
• • - •(37)

*11,1 - "• l qq , •l ' I

for I - n + 1, and every n ÷ 1 steps di -01

Algorithm 7, Projected Newt.,a-Paphson (P-N-R)

t1 i If tl,-lti~h ltli,),l (fii i (38)

R,. , (, .. r I) Sii, 1, (39)

for i - n, and every ri steps tt, R1.

The last method investigates the eflect of solving R, Y, S1 exactly tu.sing

the schemes of Sec 4 in the absence of quadraticity. Ify, provides the projec-

tion of y, orthogonal to [VOy, y,, ... . Every i steps R, is an approxima-

tion to A(x)d and a Newton-Raphson move is made.

The reset form of the algorithm is obtained by resetting 1.1 1 for Algo-
rithni 2, 3, 4, and 7 to R and restarting. Algorithm 1 must be reset every n

steps and, in Algorithm 6, d,.I is reset to- 4 ,1 always.

The linear minimization is performed by a Fibonacci search. Cubic

interpolation works well on low-order polynumial functions but does not prove

adequate for he logarithmic penalty functions used in the Sequential Uncon-

13



atrained Minmization Technique (SUMT) for which Algorithms I to 7, plus

several Uthers, make up an experimnental XMOVE aubxoutine."' 1 2

Five problems were considered. The data fur these, aud other inforna-

tion, are found in App B. The numerical results axe of course strictly com-
parative• for eac' pol-'uA.m in t-ah c'ase th aa~iest algorit~hm is indicat~ed by

encircled and italicized iteration mimbers.

Table 1 gives results for Roaenbrock's bananx-shaped valley."

NE)l ý l'MX2 el) X1 • (40)

StartLng point (xi ,s>) - (-1.2, 1.0); the numbe&'s quoted are iterations until
I(X.) < 10-13.

TABLE I TABLE 2

Numerical Results of Problem 1 tIumerical Results rf Problem 2

Mode Algorithm Normal Regid
Algorithm

Normal R %at .p 6
36 47

i, P-G .. 42 3 46 47
2 18 31 4, F.-P-) 40 49
3 21 37 ,.F-
4, F-P-D i9 35 6, I-H -

5, N.R 7, P.N.I 586. F .R -
" PA-Fl 36 21

Table 2 gives results for a test function credited to C. F. Wood of Westing-

house Research Laboratory:

f(X) - 100(x ,- 2)2  (I _ I2ý
"9101(( I)2 ( 19.8(- (- )-r- 4)

This is desigr'.d to have a nonoptimal stationary point that can cause prema-

ture convergence. Initial point (xi, X2, x3 , X4) = -3,-1, -3, -1), and the num-

ber of iterations is for f(xz) - 0-13.

Table 3 shows the results for a test problem formulated by the Shell De-

velopment Company,
3 5 5 5f(x) I • x • I, +1 r

14



"sub pct to 2

I-t O b, 1,2. 10 (42)

This is a linearly conit'ialnd problem, which for particular choices of ej, c1l,
4i hass a -. vt- obectlve.,• For this probiem, SUMT replaces M(z) by Ox) - r

4.1 log, g, (x) for a parameter r > 0, where g1(z) - 0 represents the ibh in-

equality constraint. Uf A*(r) i1 the solution of the modified problem, then

x *(r) - z* as t 0 wbere z* is the solution to Eq 42.

TABLE 3

Numericol Retults of Problem 3

r 1.0 ,-1.56 •€10-2 r -2."1 x 10"-4

Algc~ ~ ~ R4hm Nwmial R lzat .... qimlfRia, lra Raeg,

1, P-( - 26 - 55 - 70
2 27 22 44 41 62 60
3 33 22 50 40 6," 0
4, V-P.D 27 22 46 40 60 56

6, F.i- 3. - > 165 Fail
7, P-N-R 31 so 67 54

Table 4 gives results for the dual to the previous problem. here the

dual problem has a cubic objective and quadratic constraints."0

TABLE 4

Numeric:l Results of Problem 4
1.0 r- 0. 1 , ,, 0.D625

AigwlxlhmIi~e~ Ncml Pilt or MaIf Reset Nt.maol Retll

P-C - 120 - 211
2 134 98 195 034 221 18
3 136 1001 220 rn 246 R
"4, F-P-I) 406 473 133 500 M

6, F-H - >489 - Fail Fall
7. P-N-R 106 113 198 150 230 186

Fnzwlny, Table 5 shows the results for an intriFuing problem of iaxinlmz-

*' ing the area of a hexagon subject to the constraint that its maximum diameter

~1 15
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is 1. It is interesting to note that the solution is not a regular hexagon."4 The

particular formulation used had 9 variables and 13 inequality constraints, al-

though there is a certain amount of redundancy.

TABLE 5
NumericjI Rusults of Probl.m 5

r - 1.0 r- 10 2 r- 10r 4 1- r6

NWMOI Row Nwmal JURWe N..1 R@SM 1 NWMGI R.ast

1 3 - 55, - 194 - 2784, F-P-D .47 is 66 40 206 215 8S•. N'R is -- -- (a - @ --
6. I,'.l -- 13 -- 55 -- 194 -- 278
7, P'N-R 19 23 51 .58 92 91 120 101

Summary of Results

Tables 1 to 5 Illustrate primarily the difficulty of selecting a meaningful

test problem. The first two problems are smooth polynomials albrit with odd-

shaped valleys. The next three problems are basically quadratics or cubics

with infinite barriers of the penalty functions against which the solutions lie.

This means that their hessian matrices A(z,) become very ill-conditioned, for

the binding constraints correspond to large eigenvalues, which tend to infinity

ior-ixed r as the solution z, (r) approaches the constraint.

If second derivatives are available, the Newton-Raphson method is clearly

the best for all five problems.

It seems that on smooth polynomials the variable metric methods are

best not reset, while on penalty functions they are best reset. Under these

conditions, the Fletcher-Powell-Davidon algorithm is better for the former

class of problems and Algorithm 3 is better for the latter class, the penalty

functions. It is remarkable that in Table 4 Algorithms 2, 3, and in particular

4 were extremely slow when not reset.

Finally Algorithm 7, the projected Newton-Raphson, is better than the

projected gradient, showing that second-order information helps. However,

16



the separate calculation to obtain RN exactly (Eq 39) does not seem to merit the

effort compared with the other schemes.

6. CONCLUSIONS

I Tis paper has unified a series of algorithms in a single framework.

Basically, this IE tWat variable metric schemes depend on the generalized solu-I tion to a set of linear equations, and their associated projection properties give

rise to conjugate directions. A result of this general approach has been three

new algorithms whose comparative numerical properties are promising, Ex-

tensions to this work will be found elsewbere. 1

1?
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Appondid A

BORDERED INVERSE LEMMA

As an application of the matrix inverse lemma consider

H, - A(B'C)- D'

where A, 0, C, D are all a x i matrices with i <a such that they have rank .

Let ab,c,d be n-vectors such that LA, a3, etc, have rank i + 1 and consider
111+1 - tA. ,I((, a I'[.C " 'D-1lD, dI'

Applying the bordered inverse lemma to the center matrix,"
Hf., AatIa.,][ J c'- o° [t-.,'IO '.,I'A'.'I-b'CR,1)(O,,I'

where
R -(B'C)-'

A b'( - CRS')C

--- Now multiplying through yields,

H1+1 - A(B'C)" 1D'-t ARBOc +a)s- (-b'CRD' II')
* , (a - A(1DCV-I Bc)(dJ - l•" B- ')

b'(l - C(B'C)- B19'

giving the basic formula used throughout this work.

20
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Appendix 3

TEST PROSLEM DATA

Problem 1. Rosenbrock's B.zana-Shaped Valley"

I Q (•' r 2  - 1,1)2 1- 2

Problem 2. Wood's Fuv.ctu,

fix) - Io0(za - A1 (0 -~ V), 9o40t - 21•- . (I X3)

1 |0."X2 - (X4 1)2 + 19.. (X - l 1)x4- I)

Problem 3. SheUl Primal Problere

f ix) X ' 4k ,1X, I dIslubject to x) I0 - 1,2,.. ,5

The dAlU f, ,J Cip , a1 ,OI d 2Mb are given in Table Bl.

Problem 4. Riell Dual Problem

1.10 5:

s'abJect t
10 S2 ' 3d,,, 2 . 1,2. .5

x,',,0 1 ,2 -.. .. 5

, 0 1.2 . .. 10

21
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TABLE B)

Data for Pruatems 3 md A

"1 2 3 4 5

•l-i& -n•' -36 48 --12

1 30 -.0 40 32 -10
2 -20 39 - 6 -31 32
3 -10 -6 t0 6 -IP
4 32 M4I - 6 39 -20
S -10 32 -10 -20 30

4 a 8 o 6 2 b, b: b"

1 -16 2 0 1 0 -40 -40 -.40
2 0 -2 0 0.4 2 -2 -2 -2
3 -3,5 0 2 0 0 -0.25 -05 -O'
4 0 -2 0 -4 1 -4 -4 -4
5 0 -9 -2 1 2.8 -4 -8 -16
6 2 0 -4 0 0 -1 -2 -4
7 -I -I - 1 1 l -40 -40 -40
8 -1 -2 -3 -2 1 -60 -60 -60
9 1 2 1 4 5 5 2.5 2.5

10 1 1 1 i 1 1 1

Problem 5. Hexagon Problem

Maximize [(x) the area of a hexAgon where,

f(S) - VIXlX4- 1 2,X3 + Z3Zg - X + 519 - Xz6r7

.ubject to constraints that the ma3imum diameter is unity

1 z 4 .
Z_13 4

"I•2
"1 ( X2)

5 6l X2 +1X2 -9 )2

1 '2 (Xl 1' 4,) (X{2 " 612

SI1 r7)2 . (12 XII)2

(X3- zS)2 *(X4  S612

1 (X -3 X )2 .(S4 @)2

1 2 *(XS , 9~)2

22



and that the figue described is at tnoedgonerato hexoao

Is' 'al 0

The figure d~erefbed bat one diamotcr ontha vertical axis. The wroblin iIs

not expressd in its simplet form.

23



A~vandix C

EXAMPLES OF RE•STARTS

E.txample of Restart after a Partial Inverse Move for
the Projected Gradient Scheme

&Wppose N 2and A and b are

A (2 11 1 b (I-
0 )

A partial inverse of the leading 2 x 2 subri.atrix of A has the form

This in used as the starting matrix.

Iteration 0, the initial point

10 go )0 10

tO 31
10 31
10 41

Iteration 1, after the partial inverse step

10 0 31 0
-21 0 -31 .31

10 10 31 0

24



H is now reset to

\1/6 -1,"3 116)

Iteration 2, after one projected gradient stage

o 0 0 -10
-1 0 0 20
0 0 -10 AU(

I:, - 00 0:
after Updating using H2 Y2 above.

To check, o - AZ* + b should be zero.

0 1 0 1 i.I: 3/\o/iG/
This completes the problem after two steps instead of the normal three.

Example of a Partial Inverse Move for the
Fletcher- Powell- D[vldon Scheme

Suppose for n = 2, A and b are given by

I.0

A partlal Inverse of the leading 2 x 2 submatrlx gives

R &2 -Ho

Start, iteration 0

10 so Yo 10

10 31
10 31

10 41

25



Iteration 1, after the partial inverse step

11 61 YO

10 U -31
-21 0 -31

10 10 -,31

H2 is now reset to

/2 (1 1 / 1 0 )-(, 1 I ! (

2 0 101 1

(7/6 4/3 1/6)

-4/3 8/6 -1/3
\1/6 -1/3 1/61

Iteration 2
X2  ,42 Y. 62

0 0 0 --10
-1 0 0 20
0 0 -10 -10

HI, after updating using H2y 2 and s2 is

H3 - 2 6 2.

( -2 )

Check on the inverse

Aff I1 3 6 _2 0 1 0
A3= (2 1 )2-3 1) (1 00)0 1=1 2 1 0 1

This completes the problem after two steps instead of the normal three.
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13. AWIATkACT

Two basic approaches to the generation of conjugate directions are con-
sidered for the problem of unconstrained minimization of a quadratic function.
Using the principle oi choosing a step direction orthogonal to the previous
gradient changes, a projected gradient algorithm and a class of variable metric
algorithms are derived. Three variants of the class are developed into algo-
rithms, one of which is the Fletcher-Powell-Davidon scheme,

Numerical results indicate the merits of the new algorithms compared
to several now in use, for a variety of nonquadratic problems.
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variable metric algorithm A

projected gradient algorithma

Fletcher- Powell- Davidon algorithm
first-order derivative algorithm

quasi-Newton algorithm
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